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. Hruškar, N. Major ∗, M. Krpan
epartment of Food Quality Control and Nutrition, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

r t i c l e i n f o

rticle history:
eceived 24 September 2009
eceived in revised form 7 December 2009
ccepted 10 December 2009
vailable online 16 December 2009

eywords:
ensor array
ensory analysis
ermented milk
CA
NN
LS

a b s t r a c t

This paper reports on the application of a potentiometric sensor array used for monitoring changes in
probiotic fermented milk during storage, classification of probiotic fermented milk according to flavor
and to accurately predict the results from a human sensory panel. For that purpose the potentiometric
electronic tongue consisting of seven sensors and an Ag/AgCl reference electrode was used. The samples of
plain, strawberry, apple-pear and forest-fruit probiotic fermented milk were stored during 20 days on two
different temperatures and monitored by the electronic tongue and the human sensory panel. Various
pattern recognition techniques are adapted including multivariate data processing based on principal
components analysis (PCA) for monitoring changes occurring in probiotic fermented milk, artificial neural
networks (ANN) for the classification of probiotic fermented milk during storage, partial least square
regression (PLS) and artificial neural networks (ANN) to estimate and predict the sensory panel evaluation
results.

The highest correct classification percentage (97%) was obtained for plain probiotic fermented milk and
the lowest (87%) for apple-pear flavored probiotic fermented milk. The highest correlation between the

sensor array and the human sensory panel was obtained for the forest-fruit flavored probiotic fermented
milk both by using artificial neural networks (0.998) and partial least square regression (0.992). Results
from these analyses demonstrate that the electronic tongue can be used to monitor changes in probiotic
fermented milk during storage, to classify probiotic fermented milk according to flavor and to predict the
sensory characteristics and their relationship to the quality of the probiotic fermented milk measured by

consumer.

. Introduction

Food and beverage profiling and characterization are accom-
lished by two major routes: analytical chemistry and sensory
valuation. Traditionally, these two techniques are employed sep-
rately, with sensory evaluation using human panel to evaluate
ensory characteristics of food and instrumental analysis delin-
ating the chemical and physical properties of the food. Sensory
valuation is still used as the gold standard in the industry, but
he developments in the instrumental field have allowed the
loser relationship to be formed between these two techniques
1]. To consistently meet consumer-defined quality, it is ideal to
etermine key sensory drivers for acceptance using optimization
odeling techniques [2–4]. These techniques integrate sensory and

onsumer data, which are used to establish quality specifications

or key attributes. Product quality is monitored using the specifica-
ion and appropriately trained sensory panel [5].

Probiotics are living non-pathogenic micro-organisms which,
hen ingested, exert a positive influence on host health or physi-
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ology [6]. Probiotic fermented milk has therapeutic properties and
beneficial influence on health when consumed through a longer
period of time [7].

Development of the electronic tongue was obviously inspired
by biological sensory system, primarily human sense of taste. The
human tongue consists of a large number of non-specific receptors
(sensors) that reacts to dissolved compounds and transfers stimuli
via the nervous system to the brain, where a neural network pro-
cesses the signal pattern. Although the electronic tongue works in
liquid media, like the biological tongue, the sensitivity of the arti-
ficial system can be much higher and its capabilities much wider;
this makes the performance of the electronic tongue closer to that
of the sense of taste.

The interest in using electronic tongue instrument to supple-
ment human judgment has been a topic of research and discussion
during the last decade [8].

The first multi-sensor system for liquid analysis based on a non-
specific sensor approach was a taste sensor introduced by Toko et

al. and recently referred to by the authors also as an “electronic
tongue” [9]. Electronic tongues are the sensor arrays for liquid
analysis using both several non-specific, low-selective, chemical
sensors with high stability and cross-sensitivity and ion-selective
sensors. The main purpose of the electronic tongue is qualitative
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characteristics of the samples and the overall value was taken for
further analysis. Each panelist rated a sample with a score from 1 to
5 for each characteristic, which was then multiplied with an impact
factor for the given characteristic. A sample was rated with a sum
of maximum 20 points, where a higher number meant better sen-
M. Hruškar et al. / Ta

nalysis, such as recognition, classification or identification of sam-
les, which depends on the composition of the sensor array and the
athematical procedure adopted for data treatment [10]. The sens-

ng mechanism of the most of potentiometric sensors is based on
membrane, made on inorganic (polycrystalline and chalcogenide
lass [11,12]) or organic (plasticized polymeric matrix doped with
embrane active components [13,14], Langmuir–Blodgett [15] or

lectropolymerised films [16], etc.) materials [17]. The membrane
s the main active component but in the same time it is also one of
he weak points of the sensor, because most of drawbacks, such as
eproducibility and long-term stability, depend on the membrane
17]. The taste sensory system transforms information related to
onic content in a liquid sample to an electrical signal measured
y a sensor array composed of ion-selective electrodes. That is,
aste-like characteristics of a liquid sample can be analyzed using
potential difference between a reference electrode and indicator
lectrodes [18].

Principal components analysis (PCA) is the most common and
ersatile statistical method for data projection, and widely used in
ata analysis to display sensor array measurements [19]. Partial

east square (PLS) regression method is very useful in predicting a
et of dependent variables from a large set of independent variables
20]. But, one of the most often used data-processing methods is an
rtificial neural network (ANN), the algorithms of which are based
n modeling of learning and recognition process in the human brain
21].

In this paper, the comparison of two methods: sensory analy-
is and electronic tongue for monitoring changes and classification
f commercial brands of probiotic fermented milk, has been pre-
ented. Measurements were performed using a trained sensory
anel and instrument analysis using the �Astree electronic tongue
roduced by Alpha M.O.S. (France). This work presents also, mul-
ivariate data processing based on PCA, PLS and ANN to visually
lassify data patterns detected by the sensory system.

. Materials and methods

.1. Samples

Analysis was performed on four types of probiotic fermented
ilk (plain flavored, strawberry flavored, forest-fruit flavored and

pple-pear flavored). All probiotic fermented milk samples were
urchased on the local Croatian market freshly delivered from the
roducer. Samples were stored at +4 ◦C and +25 ◦C during 20 days.
ydrochloric acid (w = 37%, ISO-For Analysis grade) was purchased

rom Carlo Erba Reagents.

.2. The ˛Astree electronic tongue

The �Astree liquid and taste analyzer was purchased from Alpha
.O.S., France. The electronic tongue uses an 16-position 730 Sam-

le Changer and 759 Swing Head for sampling, both from Metrohm,
td., an interface electronic module and a sensor kit developed by
lpha M.O.S., France, a reference Ag/AgCl electrode and a mechan-

cal stirrer both from Metrohm Ltd. The sensor kit #1 has been
eveloped specially for food analysis to insure good sensitivity
nd selectivity of the sensors [22]. It comprises of seven non-
pecific, cross-selective potentiometric sensors (named JB, BA, BB,
A, GA, HA and ZZ) which are chemically modified field effect
ransistors (CHEMFETs). The active electrode area of the sensors
s covered by an organic coating. By variation in composition of

his organic coating different sensitivity and selectivity for each
ensor to various substances was obtained [23]. Cross-sensitivity
n electronic tongue systems ensures a wider response to differ-
nt substances and thus a more accurate reflection of the analyte’s
hemical image. Cross-sensitivity can be obtained by employing
81 (2010) 398–403 399

different sensing materials or by combining various ionophores
[24].

The potentiometric sensors use an electrochemical interface to
convert the ionic activity on the surface of the transducer to a
change of charge. This change of charge results in a potential change
on the transducer which is then measured against a reference elec-
trode [25]. In the case of CHEMFETs the transducer element is a
field effect transistor [24] and the origin of the potential change is
the complexation of the analyte with the ion carrier at the outer
phase boundary on the membrane/aqueous solution interface [26].
The �Astree electronic tongue was connected to a computer built
according to instructions (Alpha mos manual) with the Astree II
software (Alpha M.O.S.,Version 3.0.1., 2003) installed. The Astree II
software automatically gathers and stores the sensors output data.

2.3. Instrumental measurements

Four types of probiotic fermented milk were stored for 20 days at
two different temperatures (+4 ◦C and +25 ◦C) and analyzed by the
electronic tongue every 5th day. During the experiment 120 mea-
surements were performed. All samples were analyzed at +25 ◦C.
Hydrochloric acid diluted in deionized water (0.01 mol/L) was ana-
lyzed as a reference sample together with fermented milk samples
to follow and later correct the drift of the sensors in time. Condi-
tioning of the potentiometric sensor array with probiotic fermented
milk was performed prior to each analysis session. The conditioning
of the sensor array consisted of analyzing plain probiotic fermented
milk until the response of each sensor changed less than 20 mV in
100 s.

The samples were randomly inserted in the autosampler and
each sample was analyzed 300 s in 1 s intervals. Three runs were
performed during every analysis session giving a total of three
measurements for each sample. Typical sensor stabilities after
conditioning are shown in Fig. 1. The sensors were rinsed with
deionized water for 30 s between measurements.

2.4. Sensory evaluation

The sensory panel consisted of five trained panelists. The evalu-
ation of the sensory characteristics (appearance, consistency, color,
odor and flavor) of probiotic fermented milk was performed accord-
ing to ISO 6658:2005 [27]. The sensory panel rated the sensory
Fig. 1. Sensor responses to an apple-pear sample after conditioning.
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ory characteristics. The obtained results were used to assess the
erformance of the potentiometric sensor array as a technique in
ensory analysis.

.5. Data analysis

The sensor outputs collected by the Astree II software (Alpha
.O.S.) were imported to Microsoft Excel (Microsoft Excel 2002,

P-2) and centered [28]. The sensor drift correction was per-
ormed using data obtained by the analysis of the reference sample
hydrochloric acid, 0.01 mol/L). The mean value of three measure-

ents per sample was calculated and subjected to evaluation with
rincipal component analysis (PCA). PCA was used as an unsu-
ervised linear feature extraction and dimensionality reduction
ethod in order to find patterns in the obtained data. PCA is widely

sed by authors [19,24,29] because it uses the most expressive fea-
ures, which are the eigenvectors with the largest eigenvalues, to
ffectively approximate data by a linear subspace using the mean
quare criterion [30]. PCA was employed as a statistical method
or the evaluation of the data in order to recognize patterns in
he sensor outputs which could be associated with the occurring
hanges during storage of probiotic fermented milk samples at dif-
erent temperatures. The PCA was performed using Statistica 7.1
StatSoft, Inc., 2005). For the classification of the four types of pro-
iotic fermented milk ANN were performed on the centered and
orrected data using Statistica 7.1 (StatSoft, Inc., 2005). ANN have
he ability to learn complex nonlinear input–output relationships,
se sequential training procedures and adapt themselves to the
ata. However ANN are equivalent or similar to classical statisti-
al pattern recognition methods in spite of the seemingly different
nderlying principles [30]. In this approach choosing the training
et becomes a liability in terms of accurately describing the clas-
ification model [30] because in the food industry, especially the
airy industry, products change in composition daily. To assess
he correlation between the sensory panel analysis results and the

ata obtained by the potentiometric sensor array PLS regression
nd ANN regression were employed. PLS and ANN regression were
erformed using Statistica 7.1 (StatSoft, Inc., 2005). The PLS regres-
ion method is employed because of its particular usefulness in
redicting a set of dependent variables from a large set of indepen-

ig. 2. PCA plot of (a) forest-fruit flavored, (b) plain, (c) strawberry flavored and (d) appl
t two different temperatures, number of replicas n = 3, 10 samples per type of probiotic f
81 (2010) 398–403

dent variables [20]. ANN provide novel nonlinear algorithms for
feature extraction. Those algorithms offer several advantages, as
unified approaches for feature extraction and flexible procedures
for finding nonlinear solutions. In the case of neural networks, both
regression and classification problems can be seen as particular
cases of function approximation. In case of classification problems
the functions that need to be approximated are the probabilities of
membership of the different classes expressed as functions of the
input variables, while in the case of regression problems it is the
regression function that needs to be approximated [31].

3. Results and discussion

3.1. Monitoring changes in probiotic fermented milk during
storage by the potentiometric sensor array

The aim of the experiment was to assess the performance of a
potentiometric sensor array in the recognition of occurring changes
in probiotic fermented milk samples during storage.

The PCA scores of the measurements are shown in Fig. 2. The
total variances shown by the first two principal components (Factor
1, Factor 2) for plain, strawberry flavored, forest-fruit flavored and
apple-pear flavored fermented milk are 97.58%, 97.52%, 97.86% and
97.95%, respectively (Fig. 2). The main source of variance between
the samples, as shown by the first principal component (Factor 1),
is the duration of storage. All sensors had similar contributions
to the first principal component except sensor CA which had the
highest contribution to the second principal component (Factor
2) (Table 1). The second principal component shows that the sec-
ond most important source of variance between the samples is the
storing temperature. The changes occurring in probiotic fermented
milks during storage are more pronounced at +25 ◦C and are visi-
ble as early as at the 5th day of storage. Samples stored at +4 ◦C
show little change during the first 10 days of storage, but change
significantly between the 10th and 15th day. The samples stored at

+25 ◦C also show significant change between the 10th and 15th day
of storage (Fig. 2). As shown by other authors [32,33] the changes in
composition of fermented milks are strongly influenced by storage
time and storing temperature. The electronic tongue used in this
experimental session was capable of tracking changes in composi-

e-pear flavored probiotic fermented milk measurements during 20 days of storage
ermented milk.
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Table 1
Contribution of the sensors to principal components, based on correlations, according to flavor of probiotic fermented milk.

Sensors Forest-fruit Plain Strawberry Apple-pear

Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

JB 0.187345 0.006090 0.186281 0.006424 0.190822 0.008781 0.200824 0.011280
BA 0.161791 0.054884 0.165103 0.045696 0.165448 0.043808 0.172741 0.050835
BB 0.162488 0.085893 0.164043 0.082461 0.163294 0.091768 0.155101 0.121023
HA 0.116065 0.223276 0.111726 0.238943
ZZ 0.155099 0.110346 0.150988 0.122536
CA 0.052283 0.443192 0.068673 0.391235
GA 0.164929 0.076318 0.153187 0.112704

Table 2
Classification of probiotic fermented milk according to flavor by artificial neural
networks.

Apple-pear Strawberry Plain Forest-fruit

Total 30 30 30 30
Correct 26 27 29 27
Wrong 4 3 1 3
Unknown 0 0 0 0
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Correct (%) 87 90 97 90
Wrong (%) 13 10 3 10
Unknown (%) 0 0 0 0

ion of different types of probiotic fermented milk during storage.
oreover, the electronic tongue showed that changes in composi-

ion occur more rapidly on higher temperatures.

.2. Classification of probiotic fermented milk by means of
rtificial neural networks

The results obtained by the potentiometric sensor array were
rocessed with artificial neural networks to classify probiotic fer-
ented milks according to flavor. The ANN model created had a

igh percentage of correct classification regardless of storage dura-
ion and temperature.

The advantage of using measurements of the samples through
heir entire shelf life in the model is to gain a pool of data that is
apable of describing the overall flavor instead the temporary fla-
or of the products. In the process of training neural networks 90
andomly selected sample measurements from four different types
f probiotic fermented milk were used and 30 sample measure-
ents were used for validation. The neural network created had 7

eurons in the input layer, 74 neurons in the hidden layer and 4
eurons in the output layer. The methods used for training of the
odel were the sampling method, k-nearest neighbors method and

seudo-inversion method. The model had the highest percentage of
orrect classification for plain probiotic fermented milk (97%), then
orest-fruit and strawberry flavored (90% both) and the lowest for

he apple-pear flavored probiotic fermented milk (87%) (Table 2).
pon examining the training and validation set separately, the

raining set used for building the ANN model had the lowest per-
entage of correct classification of 92% for the strawberry flavored
robiotic fermented milk and the highest of 100% for forest-fruit fla-

able 3
orrelation coefficients and standard errors for the ANN regression model.

Forest-fruit Plain

Training set Validation set Training set Validation

Data mean 16.885 16.570 17.360 17.570
Data S.D. 2.912 2.713 1.745 0.980
Error mean 0.000 −0.130 0.000 −0.014
Error S.D. 0.046 0.292 0.061 0.293
Abs E. Mean 0.039 0.275 0.046 0.226
S.D. Ratio 0.016 0.108 0.035 0.299
Correlation 0.999 0.996 0.999 0.964
0.114417 0.214564 0.123486 0.180558
0.155376 0.115729 0.138905 0.158893
0.041568 0.452586 0.038208 0.395938
0.169076 0.072765 0.170734 0.081473

vored probiotic fermented milk. The validation set, used for testing
the obtained model had the lowest percentage of correct classi-
fication with the apple-pear and strawberry flavors (63%, both).
The highest percentage of correct classification in the validation
set had plain probiotic fermented milk with 100% correct classifi-
cation. Strawberry flavored probiotic fermented milk had 75% of
correct classifications in the validation set. The lower percentages
of correct classifications in the validation set for apple-pear and
forest-fruit flavored probiotic fermented milk could be due to over-
training of the model (95% and 100% of correct classifications in the
training set, respectively) [34].

Ciosek et al. [35] obtained high percentage of correct classifica-
tion of orange juice, beer and milk samples (milk samples had the
highest percentage of correct classification − 100% in the training
set and 96.7% in the test set) by a sensor array using the BPNN
(back propagation neural networks) method. Ciosek and Wrob-
lewski [24] obtained a high correct classification percentage on
milk samples (100% of correct classification) with an array consist-
ing of both selective and partially selective sensors using only the
PLS–DA method in a stationary system. The percentage of correct
classification lowered significantly when only partially selective
sensors were applied. This implies that selective sensors, combined
with the existing partially selective sensors could improve the per-
formance of the commercial potentiometric sensor array. Dias et al.
[29] also obtained high percentage of correct classification (93%) of
cow and goat milk samples with a sensor array consisting of 40
sensors using the DA method. The correct classification percentage
in cross-validation was 70%.

3.3. Correlation between sensory panel and potentiometric
sensor array

Sensory evaluation was carried out by a trained sensory panel
and an attempt was made to find correlations between the results
of the sensory panel and the measurements performed by the
electronic tongue. The data acquired by the electronic tongue
was compared to the sensory panel ratings of the samples dur-

ing storage at two different temperatures. ANN regression and PLS
regression were employed to model the sensory panel ratings and
calculate correlations.

During the training of ANN models, 20 measurements were ran-
domly selected to form and 10 measurements to validate a given

Apple-pear Strawberry

set Training set Validation set Training set Validation set

17.440 16.540 17.700 17.250
2.309 1.901 2.257 1.998
0.000 0.101 −0.002 −0.332
0.325 0.360 0.060 0.827
0.238 0.279 0.047 0.613
0.141 0.189 0.027 0.414
0.990 0.982 0.999 0.929
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ig. 3. ANN regression between the potentiometric sensor array and the human sen
avored probiotic fermented milk, number of replicas n = 3, 10 samples per type of
odel for each type of probiotic fermented milk. The correlation
oefficients and the standard errors of the ANN regression model
re presented in Table 3. In Figs. 3 and 4 the regression curves of
he ANN and the PLS model are shown with respective correlations.

ig. 4. PLS regression between the potentiometric sensor array and the human sensory pa
avored probiotic fermented milk, number of replicas n = 3, 10 samples per type of ferme
anel for (a) plain, (b) forest-fruit flavored, (c) apple-pear flavored and (d) strawberry
nted milk.
All networks were trained by a back propagation algorithm fol-
lowed by a conjugate gradient algorithm. The PLS regression model
employed 30 measurements to form a regression curve for each
type of probiotic fermented milk. The highest correlation estab-

nel for (a) plain, (b) forest-fruit flavored, (c) apple-pear flavored and (d) strawberry
nted milk.
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ished with PLS regression was found for the sensory evaluation
f forest-fruit flavored probiotic fermented milk and was 0.992
Fig. 4). With ANN regression the established correlation was 0.998
or the same sensory evaluation. During the training of the ANN

odel for the prediction of sensory evaluation of forest-fruit fla-
ored probiotic fermented milk, a correlation of 0.999 was achieved
or the training set and 0.996 for the test set (Table 3, Fig. 3). The
etwork had 4 neurons in the input layer, 6 neurons in the hidden

ayer and 1 neuron in the output layer. The correlation obtained by
NN regression was slightly higher than the correlation obtained
y PLS regression which can be explained by a better regression
lgorithm and input downsizing. The correlation obtained by PLS
egression for the sensory evaluation of apple-pear flavored pro-
iotic fermented milk was 0.979 (Fig. 4), while a correlation of
.988 was achieved using ANN regression. The network created
ad 7 neurons in the input layer, 9 neurons in the hidden layer
nd 1 neuron in the input layer. The training set correlation for
he apple-pear flavored probiotic fermented milk was 0.990 and
he correlation for the test set was 0.982 (Table 3, Fig. 3). Again
he ANN regression model proved more efficient at approximat-
ng the function of regression of the sensory evaluation and again
ust by a small margin. The correlation for sensory evaluation of
lain probiotic fermented milk obtained by PLS regression was sim-

lar to the evaluation of apple-pear probiotic fermented milk and
as 0.967 (Fig. 4). The correlation obtained by ANN regression was

.994 which is moderately higher than the correlation obtained by
he PLS regression model. During the training of the ANN regres-
ion model for the sensory evaluation of plain probiotic fermented
ilk the training set achieved a correlation of 0.999 and the test

et achieved a correlation of 0.964 (Table 3, Fig. 3). The network
onsisted of 5 neurons in the input layer, 6 neurons in the hidden
ayer and 1 neuron in the output layer. The smallest correlation

as found between the observed and predicted sensory evaluation
f strawberry flavored probiotic fermented milk obtained by PLS
egression and it was 0.946 (Fig. 4). In the case of ANN regression
he correlation was 0.975 for the same sensory evaluation which
as significantly higher than the correlation obtained by the PLS

egression model. In the training process the correlation obtained
or the training set was 0.999 and for the test set 0.929 (Table 3,
ig. 3). The network created had 6 neurons in the input layer, 9
eurons in the hidden layer and 1 neuron in the output layer.

ANN regression proved to be a better tool for predicting sensory
valuation scores for all analyzed types of probiotic fermented milk.
he data obtained from the potentiometric sensor array achieves
igh correlation with the observed sensory panel scores for all four
ypes of probiotic fermented milk, both with the ANN regression
nd PLS regression methods.

. Conclusions

In this paper a commercially available potentiometric sensor
rray is evaluated as a simple technique in sensory analysis of pro-
iotic fermented milk. The sensor array reported successfully on
he changes that occurred in the composition during storage of pro-

iotic fermented milk. Moreover, the sensor array was capable of
racking different rates of degradation of probiotic fermented milk
tored at two different temperatures. The usefulness of this tech-
ique proved itself in the classification of the analyzed types of
robiotic fermented milk during the entire shelf life. The statisti-

[

[
[
[
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cal interpretation of the data acquired by the sensor array varied
depending on the statistical method applied. From the statistical
methods applied in this paper ANN provided the best evaluation
scores which simplifies the future statistical interpretation of the
acquired sensor array data of probiotic fermented milk samples.
The measurements of the potentiometric sensor array achieved
a high correlation with the results of the human sensory panel
demonstrating the potential as a useful technique in sensory anal-
ysis.
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